Apoptosis and survival - Anti-apoptotic action of membrane-bound ESR1

Click on a target from the pathway image to view related information. Zoom     View Legend

photo_map
 


Human PrimePCR Selections
photo_fpc
Anti-Apoptotic Action of Membrane Bound ESR1 H96

Predesigned 96-well panel for use with SYBR® Green

 

List Price:  $366.00

 

Your Price : Log In

photo_fpc
Anti-Apoptotic Action of Membrane Bound ESR1 H384

Predesigned 384-well panel for use with SYBR® Green

 

List Price:  $496.00

 

Your Price : Log In

Anti-apoptotic action of membrane-bound ESR1

Estradiol exerts an anti-apoptotic effect on a wide variety of tissues. Estradiol as classical steroid hormone diffuses through plasma membrane, activates ESR1 (membrane) and promotes its membrane localization [1]. Activation ESR1 (membrane) leads to anti-apoptosis [2], [3], [4].

Activated ESR1 (membrane) binds to and activates PI3K reg class IA (p85) [5], [6]. PI3K cat class IA via PtdIns(3,4,5)P3 and PDK (PDPK1) activates AKT(PKB) [7]. Upon Estradiol action, activated AKT(PKB) promotes anti-apoptosis.

Primarily, AKT(PKB) phosphorylates and activates eNOS which catalyzes the synthesis reaction of NO [5], [8]. NO promotes cell survival by several mechanisms, including inhibition of mitochondrial permeability transition pore opening [9].

AKT(PKB) directly phosphorylates and activates CREB1, which regulates transcription of Bcl-2 [10], [3]. [11]. Also, AKT(PKB) phosphorylates and inhibits BAD, thus preventing its binding and inhibition of Bcl-2 and Bcl-XL [12].

As a result of Estradiol action AKT(PKB) inhibits ASK1 (MAP3K5)/ MEK4(MAP2K4)/ JNK(MAPK8-10) cascade preventing inhibition of Bcl-2 and Bcl-XL [13], [14], [15].

Activation of Bcl-2 and Bcl-XL and suppression of Bax under Estradiol action prevents formation of mitochondrial permeability transition pore, release of Cytochrome c from the mitochondria into the cytoplasm, and activation of caspase cascade [12], [16].

Estradiol can also activate Protein kinases C (PKC) (e.g., PKC-epsilon and/or PKC-alpha) [17], [18]. This may be realized via PtdIns(3,4,5)P3 [19] and PDK (PDPK1) [20], [21]. PKC-epsilon and/or PKC-alpha phosphorylates voltage-dependent L-type Ca(II) channel, alpha 1C subunit and promotes Ca("2+) transport into the cytosol [17], [22]. Intracellular Ca("2+) rise activates Ca-dependent conventional forms of PKC, possibly PKC-alpha, which activates c-Src/ c-Raf-1/ MEK1(MAP2K1) and MEK2(MAP2K2)/ ERK1/2 pathway [23], [24], [25]. Activated ERK1/2 phosphorylates and activates p90RSK1 [26], [27], which activates CREB1, and that in turn promotes transcription of anti-apoptotic protein Bcl-2 [12], [22], [28]. PKC-epsilon activated by Estradiol action also can directly bind to Bax and inhibit its translocation into mitochondria [29].

ESR1 (membrane) also can directly or through G-proteins signaling activate c-Src, which further leads to ERK1/2 and p90RSK1 p90RSK1 activation. Activated p90RSK1 directly inhibits BCL2-antagonist of cell death (BAD) [26], [27].



Objects list:

AKT(PKB) AKT(PKB) Protein group
ASK1 (MAP3K5) Mitogen-activated protein kinase kinase kinase 5
BAD Bcl2 antagonist of cell death
Bax Apoptosis regulator BAX
Bcl-2 Apoptosis regulator Bcl-2
Bcl-XL Bcl-2-like protein 1
CREB1 Cyclic AMP-responsive element-binding protein 1
Ca("2+) Chemical IUPAC name calcium(+2) cation
Ca("2+) Chemical IUPAC name calcium(+2) cation
Cytochrome c Cytochrome c
ERK1/2 Erk 1/2 Protein group
ESR1 (membrane) Estrogen receptor
Estradiol Chemical IUPAC name (8R,9S,13S,14S,17S)-13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a]phenanthrene-3,17-diol
JNK(MAPK8-10) c-Jun N-terminal kinases Protein group
L-type Ca(II) channel, alpha 1C subunit Voltage-dependent L-type calcium channel subunit alpha-1C
MEK1(MAP2K1) Dual specificity mitogen-activated protein kinase kinase 1
MEK2(MAP2K2) Dual specificity mitogen-activated protein kinase kinase 2
MEK4(MAP2K4) Dual specificity mitogen-activated protein kinase kinase 4
NO Chemical IUPAC name Nitric oxide
PDK (PDPK1) 3-phosphoinositide-dependent protein kinase 1
PI3K cat class IA The catalytic subunit of phosphatidylinositol 3-kinase subgroups IA Protein group
PI3K reg class IA (p85) Phosphoinositide-3-kinase, regulatory subunit 1 (alpha) Protein group
PKC-alpha Protein kinase C alpha type
PKC-epsilon Protein kinase C epsilon type
PtdIns(3,4,5)P3 PtdIns(3,4,5)P3 Compound group
c-Raf-1 RAF proto-oncogene serine/threonine-protein kinase
c-Src Proto-oncogene tyrosine-protein kinase Src
eNOS Nitric oxide synthase, endothelial
p90RSK1 Ribosomal protein S6 kinase alpha-1

References:

  1. Prossnitz ER, Arterburn JB, Sklar LA
    GPR30: A G protein-coupled receptor for estrogen. Molecular and cellular endocrinology 2007 Feb;265-266:138-42
  2. Kousteni S, Bellido T, Plotkin LI, O'Brien CA, Bodenner DL, Han L, Han K, DiGregorio GB, Katzenellenbogen JA, Katzenellenbogen BS, Roberson PK, Weinstein RS, Jilka RL, Manolagas SC
    Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell 2001 Mar 9;104(5):719-30
  3. Honda K, Shimohama S, Sawada H, Kihara T, Nakamizo T, Shibasaki H, Akaike A
    Nongenomic antiapoptotic signal transduction by estrogen in cultured cortical neurons. Journal of neuroscience research 2001 Jun 1;64(5):466-75
  4. Wang M, Crisostomo P, Wairiuko GM, Meldrum DR
    Estrogen receptor-alpha mediates acute myocardial protection in females. American journal of physiology. Heart and circulatory physiology 2006 Jun;290(6):H2204-9
  5. Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK
    Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 2000 Sep 28;407(6803):538-41
  6. Mannella P, Brinton RD
    Estrogen receptor protein interaction with phosphatidylinositol 3-kinase leads to activation of phosphorylated Akt and extracellular signal-regulated kinase 1/2 in the same population of cortical neurons: a unified mechanism of estrogen action. The Journal of neuroscience : the official journal of the Society for Neuroscience 2006 Sep 13;26(37):9439-47
  7. Scheid MP, Woodgett JR
    Unravelling the activation mechanisms of protein kinase B/Akt. FEBS letters 2003 Jul 3;546(1):108-12
  8. Mendelsohn ME
    Nongenomic, ER-mediated activation of endothelial nitric oxide synthase: how does it work? What does it mean? Circulation research 2000 Nov 24;87(11):956-60
  9. Murphy E, Steenbergen C
    Cardioprotection in females: a role for nitric oxide and altered gene expression. Heart failure reviews 2007 Dec;12(3-4):293-300
  10. Du K, Montminy M
    CREB is a regulatory target for the protein kinase Akt/PKB. The Journal of biological chemistry 1998 Dec 4;273(49):32377-9
  11. Brunet A, Datta SR, Greenberg ME
    Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway. Current opinion in neurobiology 2001 Jun;11(3):297-305
  12. Nilsen J, Brinton RD
    Mitochondria as therapeutic targets of estrogen action in the central nervous system. Current drug targets. CNS and neurological disorders 2004 Aug;3(4):297-313
  13. Razandi M, Pedram A, Levin ER
    Plasma membrane estrogen receptors signal to antiapoptosis in breast cancer. Molecular endocrinology (Baltimore, Md.) 2000 Sep;14(9):1434-47
  14. Eckhoff DE, Smyth CA, Eckstein C, Bilbao G, Young CJ, Thompson JA, Contreras JL
    Suppression of the c-Jun N-terminal kinase pathway by 17beta-estradiol can preserve human islet functional mass from proinflammatory cytokine-induced destruction. Surgery 2003 Aug;134(2):169-79
  15. Mabuchi S, Ohmichi M, Kimura A, Nishio Y, Arimoto-Ishida E, Yada-Hashimoto N, Tasaka K, Murata Y
    Estrogen inhibits paclitaxel-induced apoptosis via the phosphorylation of apoptosis signal-regulating kinase 1 in human ovarian cancer cell lines. Endocrinology 2004 Jan;145(1):49-58
  16. Nilsen J, Chen S, Irwin RW, Iwamoto S, Brinton RD
    Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function. BMC neuroscience 2006 Nov 3;7:74
  17. Yang L, Liu G, Zakharov SI, Morrow JP, Rybin VO, Steinberg SF, Marx SO
    Ser1928 is a common site for Cav1.2 phosphorylation by protein kinase C isoforms. The Journal of biological chemistry 2005 Jan 7;280(1):207-14
  18. Sovershaev MA, Egorina EM, Andreasen TV, Jonassen AK, Ytrehus K
    Preconditioning by 17beta-estradiol in isolated rat heart depends on PI3-K/PKB pathway, PKC, and ROS. American journal of physiology. Heart and circulatory physiology 2006 Oct;291(4):H1554-62
  19. Toker A, Meyer M, Reddy KK, Falck JR, Aneja R, Aneja S, Parra A, Burns DJ, Ballas LM, Cantley LC
    Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns-3,4-P2 and PtdIns-3,4,5-P3. The Journal of biological chemistry 1994 Dec 23;269(51):32358-67
  20. Dutil EM, Toker A, Newton AC
    Regulation of conventional protein kinase C isozymes by phosphoinositide-dependent kinase 1 (PDK-1). Current biology : CB 1998 Dec 17-31;8(25):1366-75
  21. Cenni V, Doppler H, Sonnenburg ED, Maraldi N, Newton AC, Toker A
    Regulation of novel protein kinase C epsilon by phosphorylation. The Biochemical journal 2002 May 1;363(Pt 3):537-45
  22. Wu TW, Wang JM, Chen S, Brinton RD
    17Beta-estradiol induced Ca2+ influx via L-type calcium channels activates the Src/ERK/cyclic-AMP response element binding protein signal pathway and BCL-2 expression in rat hippocampal neurons: a potential initiation mechanism for estrogen-induced neuroprotection. Neuroscience 2005;135(1):59-72
  23. Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H, Finkenzeller G, Marme D, Rapp UR
    Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature 1993 Jul 15;364(6434):249-52
  24. Schonwasser DC, Marais RM, Marshall CJ, Parker PJ
    Activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway by conventional, novel, and atypical protein kinase C isotypes. Molecular and cellular biology 1998 Feb;18(2):790-8
  25. Cordey M, Gundimeda U, Gopalakrishna R, Pike CJ
    Estrogen activates protein kinase C in neurons: role in neuroprotection. Journal of neurochemistry 2003 Mar;84(6):1340-8
  26. Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME
    Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science (New York, N.Y.) 1999 Nov 12;286(5443):1358-62
  27. Fernando RI, Wimalasena J
    Estradiol abrogates apoptosis in breast cancer cells through inactivation of BAD: Ras-dependent nongenomic pathways requiring signaling through ERK and Akt. Molecular biology of the cell 2004 Jul;15(7):3266-84
  28. Subramanian M, Shaha C
    Up-regulation of Bcl-2 through ERK phosphorylation is associated with human macrophage survival in an estrogen microenvironment. Journal of immunology (Baltimore, Md. : 1950) 2007 Aug 15;179(4):2330-8
  29. Lu D, Sivaprasad U, Huang J, Shankar E, Morrow S, Basu A
    Protein kinase C-epsilon protects MCF-7 cells from TNF-mediated cell death by inhibiting Bax translocation. Apoptosis : an international journal on programmed cell death 2007 Oct;12(10):1893-900

Target Details

Click on a target from the pathway image to view related information.

[ Close ]
Click here to print
[ Close ]
Click here to print
 

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined