Development - Activation of ERK by Alpha-1 adrenergic receptors

Click on a target from the pathway image to view related information. Zoom     View Legend

photo_map
 


Human PrimePCR Selections
photo_fpc
ERK Activation by Alpha-1 Adrenergic Receptor H96

Predesigned 96-well panel for use with SYBR® Green

 

List Price:  $394.00

 

Your Price : Log In

photo_fpc
ERK Activation by Alpha-1 Adrenergic Receptor H384

Predesigned 384-well panel for use with SYBR® Green

 

List Price:  $523.00

 

Your Price : Log In

Activation of ERK by Alpha-1 adrenergic receptors

Subtype alpha-1 adrenergic receptors consists of Alpha-1A adrenergic receptor, Alpha-1B adrenergic receptor and Alpha-1D adrenergic receptor. They participate in many physiological processes via different pathways. One of the best studied alpha-1 adrenergic receptors-stimulated pathways is a Mitogen-activated protein kinase 1 and 3 (ERK1/2) activation [1], [2].

Natural catecholamines, Adrenaline, and Noradrenaline, activate alpha-1 adrenergic receptors [1], [3]. The activated receptors interact with different Guanine nucleotide binding proteins (G-proteins). All three receptors interact with G-protein alpha-q and G-protein alpha-11 [4]. Alpha-1A adrenergic receptor and Alpha-1B adrenergic receptor couple with G-protein alpha-14 [5]. Alpha-1B adrenergic receptor and Alpha-1D adrenergic receptor interact with Transglutaminase 2 (TGM2) [6], [7], [8]. Alpha-1B adrenergic receptor couples with G-protein alpha-15 [5] and G-protein alpha activating activity polypeptide O (G-protein alpha-o) [4].

G-protein alpha-11, G-protein alpha-q, G-protein alpha-14, G-protein alpha-15 activate Phospholipase C beta 1 (PLC-beta1) [1], [5], [9]. TGM2 activate Phospholipase C delta 1 (PLC-delta1) [8], [10]. PLC-beta1 and PLC-delta1 hydrolyze Phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2) to produce Inositol 1,4,5-trisphosphate (IP3) and 1,2-diacyl-glycerol (DAG) [8], [11].

DAG and IP3 participate in activation of Ca('2+)-dependent Protein kinase C alpha (PKC-alpha) [12], Ca('2+)-independent Protein kinases C delta and epsilon (PKC-delta and PKC-epsilon) [1], [13], [14] and mobilization of intracellular Ca('2+). All these pathways may lead to activation of cell growth and proliferation.

Cytosolic Ca('2+) activates Calmodulin / Calcium/calmodulin-dependent protein kinase II (CaMK II)/ PTK2B protein tyrosine kinase 2 beta (Pyk2(FAK2))/ v-src sarcoma viral oncogene homolog (c-Src)/ SHC transforming protein (Shc)/ Son of sevenless homolog (SOS)/ v-Ha-ras Harvey rat sarcoma viral oncogene homolog (H-Ras) / v-raf-1 murine leukemia viral oncogene homolog 1 (c-Raf-1) / Mitogen-activated protein kinase kinases 1 and 2 ((MEK1(MAP2K1) and MEK2(MAP2K2))/ Mitogen-activated protein kinase 1 and 3 (ERK1/2) pathway [13], [15].

G-protein alpha-q-stimulated PKC-alpha and PKC-epsilon may activate Erk cascade in H-Ras-independent manner (e.g., via phosphorylation of c-Raf-1) [16], [17]. On the other hand PKC-delta and PKC-epsilon may activate Erk cascade in H-Ras-independent manner via phosphorylation of Pyk2(FAK2) [16], [18], [19].

Alpha-1 adrenergic receptors-dependent ERK1/2 activation may also be realized via Phosphoinositide-3-kinase (PI3K) [20], [21]. c-Src can activate PI3K reg class IA (p85-alpha)/ PI3K cat class IA (p110-beta) directly [21], [22], [23] or via SHC transforming protein (Shc)/ Son of sevenless homolog (SOS)/ H-Ras [21].

Activated PI3K catalyzes transformation of PtdIns(4,5)P2 into Phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3). Presumably, then PtdIns(3,4,5)P3 activates Shc / SOS / H-Ras. After that, H-Ras activates c-Raf-1 / MEK1(MAP2K1), MEK2(MAP2K2))/ ERK1/2 [15], [20], [21].

Activated ERK1/2 phosphorylate V-fos FBJ murine osteosarcoma viral oncogene homolog (c-Fos) and Jun oncogene (c-Jun), thus activating cell growth and proliferation [1], [13], [21].

Moreover, PKC-alpha, probably phosphorylates Ca2+ channels (for example, Calcium channel, voltage-dependent L type (L-type Ca(II) channel) [24], [25]) and this increase extracellular Ca('2+) entry [26]. High level of Ca('2+) influence cell contraction [2]. Also, high level of Ca('2+), which was achieved due Ca2+ channels activation, may facilitate activation of Ca('2+) -dependent PKC-alpha, thus creating a positive feedback loop. CaMK II may activates L-type Ca(II) channel as well[27].

References:

  1. Garcia-Sainz JA, Vazquez-Prado J, Villalobos-Molina R
    Alpha 1-adrenoceptors: subtypes, signaling, and roles in health and disease. Archives of medical research 1999 Nov-Dec;30(6):449-58
  2. Hague C, Gonzalez-Cabrera PJ, Jeffries WB, Abel PW
    Relationship between alpha(1)-adrenergic receptor-induced contraction and extracellular signal-regulated kinase activation in the bovine inferior alveolar artery. The Journal of pharmacology and experimental therapeutics 2002 Oct;303(1):403-11
  3. Piascik MT, Perez DM
    Alpha1-adrenergic receptors: new insights and directions. The Journal of pharmacology and experimental therapeutics 2001 Aug;298(2):403-10
  4. Gurdal H, Seasholtz TM, Wang HY, Brown RD, Johnson MD, Friedman E
    Role of G alpha q or G alpha o proteins in alpha 1-adrenoceptor subtype-mediated responses in Fischer 344 rat aorta. Molecular pharmacology 1997 Dec;52(6):1064-70
  5. Wu D, Katz A, Lee CH, Simon MI
    Activation of phospholipase C by alpha 1-adrenergic receptors is mediated by the alpha subunits of Gq family. The Journal of biological chemistry 1992 Dec 25;267(36):25798-802
  6. Baek KJ, Das T, Gray C, Antar S, Murugesan G, Im MJ
    Evidence that the Gh protein is a signal mediator from alpha 1-adrenoceptor to a phospholipase C. I. Identification of alpha 1-adrenoceptor-coupled Gh family and purification of Gh7 from bovine heart. The Journal of biological chemistry 1993 Dec 25;268(36):27390-7
  7. Chen S, Lin F, Iismaa S, Lee KN, Birckbichler PJ, Graham RM
    Alpha1-adrenergic receptor signaling via Gh is subtype specific and independent of its transglutaminase activity. The Journal of biological chemistry 1996 Dec 13;271(50):32385-91
  8. Kang SK, Kim DK, Damron DS, Baek KJ, Im MJ
    Modulation of intracellular Ca(2+) via alpha(1B)-adrenoreceptor signaling molecules, G alpha(h) (transglutaminase II) and phospholipase C-delta 1. Biochemical and biophysical research communications 2002 Apr 26;293(1):383-90
  9. Lo RK, Cheung H, Wong YH
    Constitutively active Galpha16 stimulates STAT3 via a c-Src/JAK- and ERK-dependent mechanism. The Journal of biological chemistry 2003 Dec 26;278(52):52154-65
  10. Zhang J, Tucholski J, Lesort M, Jope RS, Johnson GV
    Novel bimodal effects of the G-protein tissue transglutaminase on adrenoreceptor signalling. The Biochemical journal 1999 Nov 1;343 Pt 3:541-9
  11. Arthur JF, Matkovich SJ, Mitchell CJ, Biden TJ, Woodcock EA
    Evidence for selective coupling of alpha 1-adrenergic receptors to phospholipase C-beta 1 in rat neonatal cardiomyocytes. The Journal of biological chemistry 2001 Oct 5;276(40):37341-6
  12. Zhong H, Minneman KP
    Alpha1-adrenoceptor subtypes. European journal of pharmacology 1999 Jun 30;375(1-3):261-76
  13. Hu ZW, Shi XY, Lin RZ, Chen J, Hoffman BB
    alpha1-Adrenergic receptor stimulation of mitogenesis in human vascular smooth muscle cells: role of tyrosine protein kinases and calcium in activation of mitogen-activated protein kinase. The Journal of pharmacology and experimental therapeutics 1999 Jul;290(1):28-37
  14. Rohde S, Sabri A, Kamasamudran R, Steinberg SF
    The alpha(1)-adrenoceptor subtype- and protein kinase C isoform-dependence of Norepinephrine's actions in cardiomyocytes. Journal of molecular and cellular cardiology 2000 Jul;32(7):1193-209
  15. Della Rocca GJ, van Biesen T, Daaka Y, Luttrell DK, Luttrell LM, Lefkowitz RJ
    Ras-dependent mitogen-activated protein kinase activation by G protein-coupled receptors. Convergence of Gi- and Gq-mediated pathways on calcium/calmodulin, Pyk2, and Src kinase. The Journal of biological chemistry 1997 Aug 1;272(31):19125-32
  16. Hawes BE, van Biesen T, Koch WJ, Luttrell LM, Lefkowitz RJ
    Distinct pathways of Gi- and Gq-mediated mitogen-activated protein kinase activation. The Journal of biological chemistry 1995 Jul 21;270(29):17148-53
  17. Hamilton M, Liao J, Cathcart MK, Wolfman A
    Constitutive association of c-N-Ras with c-Raf-1 and protein kinase C epsilon in latent signaling modules. The Journal of biological chemistry 2001 Aug 3;276(31):29079-90
  18. Ueda Y, Hirai S, Osada S, Suzuki A, Mizuno K, Ohno S
    Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. The Journal of biological chemistry 1996 Sep 20;271(38):23512-9
  19. Bayer AL, Heidkamp MC, Howes AL, Heller Brown J, Byron KL, Samarel AM
    Protein kinase C epsilon-dependent activation of proline-rich tyrosine kinase 2 in neonatal rat ventricular myocytes. Journal of molecular and cellular cardiology 2003 Sep;35(9):1121-33
  20. Hu ZW, Shi XY, Lin RZ, Hoffman BB
    Alpha1 adrenergic receptors activate phosphatidylinositol 3-kinase in human vascular smooth muscle cells. Role in mitogenesis. The Journal of biological chemistry 1996 Apr 12;271(15):8977-82
  21. Hu ZW, Shi XY, Lin RZ, Hoffman BB
    Contrasting signaling pathways of alpha1A- and alpha1B-adrenergic receptor subtype activation of phosphatidylinositol 3-kinase and Ras in transfected NIH3T3 cells. Molecular endocrinology (Baltimore, Md.) 1999 Jan;13(1):3-14
  22. Gentili C, Morelli S, Russo De Boland A
    Involvement of PI3-kinase and its association with c-Src in PTH-stimulated rat enterocytes. Journal of cellular biochemistry 2002;86(4):773-83
  23. Kubo H, Hazeki K, Takasuga S, Hazeki O
    Specific role for p85/p110beta in GTP-binding-protein-mediated activation of Akt. The Biochemical journal 2005 Dec 15;392(Pt 3):607-14
  24. Liu SJ, Kennedy RH
    alpha1-Adrenergic activation of L-type Ca current in rat ventricular myocytes: perforated patch-clamp recordings. The American journal of physiology 1998 Jun;274(6 Pt 2):H2203-7
  25. Yang L, Liu G, Zakharov SI, Morrow JP, Rybin VO, Steinberg SF, Marx SO
    Ser1928 is a common site for Cav1.2 phosphorylation by protein kinase C isoforms. The Journal of biological chemistry 2005 Jan 7;280(1):207-14
  26. Graham RM, Perez DM, Hwa J, Piascik MT
    alpha 1-adrenergic receptor subtypes. Molecular structure, function, and signaling. Circulation research 1996 May;78(5):737-49
  27. O-Uchi J, Komukai K, Kusakari Y, Obata T, Hongo K, Sasaki H, Kurihara S
    alpha1-adrenoceptor stimulation potentiates L-type Ca2+ current through Ca2+/calmodulin-dependent PK II (CaMKII) activation in rat ventricular myocytes. Proceedings of the National Academy of Sciences of the United States of America 2005 Jun 28;102(26):9400-5

Target Details

Click on a target from the pathway image to view related information.

[ Close ]
Click here to print
[ Close ]
Click here to print
 

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined