IL-2 activation and signaling pathway
Interleukin-2 (IL-2) is a T-Cell-derived cytokine
important in the regulation of growth and differentiation of T-Cells, B-Cells, natural
killer cells, glioma cells, and cells of the monocyte lineage.
IL-2 signaling is mediated by a multichain
IL-2 receptor complex consisting of an alpha
(IL-2R alpha chain), beta (IL-2R beta
chain) and gamma (IL-2R gamma chain)
subunits. The IL-2R alpha chain primarily increases the
affinity of ligand binding, whereas IL-2R beta chain and
IL-2R gamma chain participate in both ligand binding, and
signal transduction [1].
IL-2 receptor activates several different pathways that
mediate the flow of mitogenic and survival-promoting signals [2].
Janus Kinases-1 and -3 (JAK1 and
JAK3) that are associated with IL-2R beta
chain and IL-2R gamma chain, respectively,
are activated after binding of IL-2 to its receptor [3], [4]. Phosphorylation of the cytoplasmic domains of
IL-2 receptor provides docking sites for the
JAK1 and JAK3. The latter
autophosphorylate and provide docking sites for and phosphorylate Signal
transducer and activator of transcription-5 (STAT5A,
STAT5). Phosphorylation induces dimerization and nuclear
translocation of STAT5 complexes, where they promote
transcription of specific target genes, e.g., Cytokine inducible SH2-containing protein
(CISH) that negatively modulates
STAT5 activation [1], [5].
IL-2 receptor complex also
binds Spleen tyrosine kinase (Syk) and lymphocyte-specific
protein tyrosine kinase (Lck) that are activated downstream
of JAK1 and JAK3, respectively
[6]. Lck is critical for the induction of
c-Fos gene. Activation of Syk
results in the induction of the c-Myc gene.
JAK3 is required for the induction of both
c-Fos and c-Myc genes [7], [8], [9], [10].
Suppressor of cytokine signaling 1 (SOCS1) is an
IL-2-induced inhibitor of IL-2
signaling that associates with JAK1 and inhibits
JAK1 kinase activity [11].
Protein tyrosine phosphatase, non-receptor type 6 (SHP-1)
dephosphorylates JAK1 and acts as a negative regulator of
IL-2 receptor/ JAK1 signaling
[12].
IL-2 receptor signaling also activates
Phosphatidylinositol 3-kinase (PI3K reg class IA (p85)/
PI3K cat class IA) which catalyzes phosphorylation of
Phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3)
[13]. This second messenger recruits molecules such as 3-Phosphoinositide
dependent protein kinase-1 (PDK (PDPK1)) and v-Akt murine
thymoma viral oncogene homolog (AKT) to the cell membrane
[14], [15], [16]. AKT
signaling stimulates Nuclear factor-kappa B (NF-kB) activity
by up-regulating I-kappaB (I-kB) degradation via
phosphorylation of I-kappaB kinase alpha (IKK-alpha), a
subunit of I-kappaB kinase complex (IKK (cat)), thereby
allowing the transcription of NF-kB target genes, such as
genes encoding proteins involved in promoting cell survival, as well as transcription of
IL-2R alpha chain and IL-2
itself [17], [18], [19], [20], [21].
IL-2 stimulates SHC (Src homology 2 domain containing)
transforming protein 1 (Shc)/ Growth factor receptor-bound
protein 2 (GRB2)/ Son of sevenless homologs
(SOS)/ v-Ha-ras Harvey rat sarcoma viral oncogene homolog
(H-Ras)/ v-Raf-1 murine leukemia viral oncogene homolog 1
(c-Raf-1)/ Mitogen-activated protein kinase kinase 1 and 2
(MEK1 and MEK2)/ Extracellular
signal-regulated kinase 1 and 2 (ERK1/2) signaling [22]. This pathway induces activation of transcription factors, including
Elk-1, c-Fos,
c-Jun/c-Fos and AP-1
that play a critical role in
IL-2 gene expression [23], [24], [25].
Protein tyrosine phosphatase, non-receptor type 11
(SHP-2) associates with PI3K reg class IA
(p85), GRB2 and GRB2-associated binding
protein (GAB2), and activates ERK1/2
pathway [26], [27], [28].
IL-2 gene expression in antigen-activated T cells plays a
critical role in orchestrating the immune responses. IL-2
gene expression is controlled at multiple levels. In an autocrine fashion, the
antigen-primed T helper cell secretes IL-2, stimulating
itself as well as other neighboring T cells [17], [19], [29].
Up-regulation of IL-2 gene expression is also the major
endpoint of signaling by the T cell antigen receptor (TCR). In normal T cells, engagement
of TCR-CD3 complexes and costimulation by CD28 lead to the stimulation of multiple
pathways followed by activation of transcription factors, including
NF-kB, nuclear factor of activated T-cells cytoplasmic
calcineurin-dependent 2 (NF-AT1), Early growth response 1
(EGR1), E74-like factor 1
(ELF1), Elk-1,
c-Fos, c-Jun/c-Fos
and AP-1.
Together, NF-kB,
NF-AT1,
EGR1 ELF1,
AP-1 and constitutively expressed POU class 2 homeobox 1
(Oct-1) regulate the IL-2
proximal promoter to drive IL-2 gene transcription [29], [30], [31]. High mobility group AT-hook 1
(HMGI/Y) can facilitate the formation of this functional
complex of transcription factors, activating IL-2 gene
expression [32].
Transforming growth factor-beta (TGF-beta) suppresses
IL-2 gene expression in T cells via SMAD family
(SMAD3 and SMAD4)-dependent
signaling [33], [34], [35]. Transducer of ERBB2 1
(Tob1) associates with SMAD4
and exerts the inhibitory effect on IL-2 transcription by
enhancement of SMAD4 DNA-binding on the negative regulatory
element of the IL-2 promoter [33].
References:
- Cacalano NA, Johnston JA
Interleukin-2 signaling and inherited immunodeficiency.
American journal of human genetics 1999 Aug;65(2):287-93
- Benczik M, Gaffen SL
The interleukin (IL)-2 family cytokines: survival and proliferation signaling pathways in T lymphocytes.
Immunological investigations 2004 May;33(2):109-42
- Liu KD, Gaffen SL, Goldsmith MA, Greene WC
Janus kinases in interleukin-2-mediated signaling: JAK1 and JAK3 are differentially regulated by tyrosine phosphorylation.
Current biology : CB 1997 Nov 1;7(11):817-26
- Zhu MH, Berry JA, Russell SM, Leonard WJ
Delineation of the regions of interleukin-2 (IL-2) receptor beta chain important for association of Jak1 and Jak3. Jak1-independent functional recruitment of Jak3 to Il-2Rbeta.
The Journal of biological chemistry 1998 Apr 24;273(17):10719-25
- Matsumoto A, Masuhara M, Mitsui K, Yokouchi M, Ohtsubo M, Misawa H, Miyajima A, Yoshimura A
CIS, a cytokine inducible SH2 protein, is a target of the JAK-STAT5 pathway and modulates STAT5 activation.
Blood 1997 May 1;89(9):3148-54
- Zhou YJ, Magnuson KS, Cheng TP, Gadina M, Frucht DM, Galon J, Candotti F, Geahlen RL, Changelian PS, O'Shea JJ
Hierarchy of protein tyrosine kinases in interleukin-2 (IL-2) signaling: activation of syk depends on Jak3; however, neither Syk nor Lck is required for IL-2-mediated STAT activation.
Molecular and cellular biology 2000 Jun;20(12):4371-80
- Minami Y, Nakagawa Y, Kawahara A, Miyazaki T, Sada K, Yamamura H, Taniguchi T
Protein tyrosine kinase Syk is associated with and activated by the IL-2 receptor: possible link with the c-myc induction pathway.
Immunity 1995 Jan;2(1):89-100
- Miyazaki T, Taniguchi T
Coupling of the IL2 receptor complex with non-receptor protein tyrosine kinases.
Cancer surveys 1996;27:25-40
- Gomez J, Gonzalez A, Martinez-A C, Rebollo A
IL-2-induced cellular events.
Critical reviews in immunology 1998;18(3):185-220
- Lord JD, McIntosh BC, Greenberg PD, Nelson BH
The IL-2 receptor promotes lymphocyte proliferation and induction of the c-myc, bcl-2, and bcl-x genes through the trans-activation domain of Stat5.
Journal of immunology (Baltimore, Md. : 1950) 2000 Mar 1;164(5):2533-41
- Sporri B, Kovanen PE, Sasaki A, Yoshimura A, Leonard WJ
JAB/SOCS1/SSI-1 is an interleukin-2-induced inhibitor of IL-2 signaling.
Blood 2001 Jan 1;97(1):221-6
- Migone TS, Cacalano NA, Taylor N, Yi T, Waldmann TA, Johnston JA
Recruitment of SH2-containing protein tyrosine phosphatase SHP-1 to the interleukin 2 receptor; loss of SHP-1 expression in human T-lymphotropic virus type I-transformed T cells.
Proceedings of the National Academy of Sciences of the United States of America 1998 Mar 31;95(7):3845-50
- Migone TS, Rodig S, Cacalano NA, Berg M, Schreiber RD, Leonard WJ
Functional cooperation of the interleukin-2 receptor beta chain and Jak1 in phosphatidylinositol 3-kinase recruitment and phosphorylation.
Molecular and cellular biology 1998 Nov;18(11):6416-22
- Datta SR, Brunet A, Greenberg ME
Cellular survival: a play in three Akts.
Genes & development 1999 Nov 15;13(22):2905-27
- Stahl M, Dijkers PF, Kops GJ, Lens SM, Coffer PJ, Burgering BM, Medema RH
The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2.
Journal of immunology (Baltimore, Md. : 1950) 2002 May 15;168(10):5024-31
- Zeiser R, Negrin RS
Interleukin-2 receptor downstream events in regulatory T cells: implications for the choice of immunosuppressive drug therapy.
Cell cycle (Georgetown, Tex.) 2008 Feb 15;7(4):458-62
- Hemar A, Cereghini S, Cornet V, Blank V, Israel A, Greene WC, Dautry-Varsat A
Kappa B binding proteins are constitutively expressed in an IL-2 autocrine human T cell line.
Journal of immunology (Baltimore, Md. : 1950) 1991 Apr 1;146(7):2409-16
- Pimentel-Mui?os FX, Mazana J, Fresno M
Regulation of interleukin-2 receptor alpha chain expression and nuclear factor.kappa B activation by protein kinase C in T lymphocytes. Autocrine role of tumor necrosis factor alpha.
The Journal of biological chemistry 1994 Sep 30;269(39):24424-9
- Kahn-Perles B, Lipcey C, Lecine P, Olive D, Imbert J
Temporal and subunit-specific modulations of the Rel/NF-kappaB transcription factors through CD28 costimulation.
The Journal of biological chemistry 1997 Aug 29;272(35):21774-83
- Kane LP, Shapiro VS, Stokoe D, Weiss A
Induction of NF-kappaB by the Akt/PKB kinase.
Current biology : CB 1999 Jun 3;9(11):601-4
- Lauder A, Castellanos A, Weston K
c-Myb transcription is activated by protein kinase B (PKB) following interleukin 2 stimulation of Tcells and is required for PKB-mediated protection from apoptosis.
Molecular and cellular biology 2001 Sep;21(17):5797-805
- Ravichandran KS, Burakoff SJ
The adapter protein Shc interacts with the interleukin-2 (IL-2) receptor upon IL-2 stimulation.
The Journal of biological chemistry 1994 Jan 21;269(3):1599-602
- Mortellaro A, Songia S, Gnocchi P, Ferrari M, Fornasiero C, D'Alessio R, Isetta A, Colotta F, Golay J
New immunosuppressive drug PNU156804 blocks IL-2-dependent proliferation and NF-kappa B and AP-1 activation.
Journal of immunology (Baltimore, Md. : 1950) 1999 Jun 15;162(12):7102-9
- Cianferoni A, Massaad M, Feske S, de la Fuente MA, Gallego L, Ramesh N, Geha RS
Defective nuclear translocation of nuclear factor of activated T cells and extracellular signal-regulated kinase underlies deficient IL-2 gene expression in Wiskott-Aldrich syndrome.
The Journal of allergy and clinical immunology 2005 Dec;116(6):1364-71
- Kim HP, Imbert J, Leonard WJ
Both integrated and differential regulation of components of the IL-2/IL-2 receptor system.
Cytokine & growth factor reviews 2006 Oct;17(5):349-66
- Gadina M, Sudarshan C, O'Shea JJ
IL-2, but not IL-4 and other cytokines, induces phosphorylation of a 98-kDa protein associated with SHP-2, phosphatidylinositol 3'-kinase, and Grb2.
Journal of immunology (Baltimore, Md. : 1950) 1999 Feb 15;162(4):2081-6
- Arnaud M, Mzali R, Gesbert F, Crouin C, Guenzi C, Vermot-Desroches C, Wijdenes J, Courtois G, Bernard O, Bertoglio J
Interaction of the tyrosine phosphatase SHP-2 with Gab2 regulates Rho-dependent activation of the c-fos serum response element by interleukin-2.
The Biochemical journal 2004 Sep 1;382(Pt 2):545-56
- Arnaud M, Crouin C, Deon C, Loyaux D, Bertoglio J
Phosphorylation of Grb2-associated binder 2 on serine 623 by ERK MAPK regulates its association with the phosphatase SHP-2 and decreases STAT5 activation.
Journal of immunology (Baltimore, Md. : 1950) 2004 Sep 15;173(6):3962-71
- Gaffen SL, Liu KD
Overview of interleukin-2 function, production and clinical applications.
Cytokine 2004 Nov 7;28(3):109-23
- Thompson CB, Wang CY, Ho IC, Bohjanen PR, Petryniak B, June CH, Miesfeldt S, Zhang L, Nabel GJ, Karpinski B
cis-acting sequences required for inducible interleukin-2 enhancer function bind a novel Ets-related protein, Elf-1.
Molecular and cellular biology 1992 Mar;12(3):1043-53
- Decker EL, Nehmann N, Kampen E, Eibel H, Zipfel PF, Skerka C
Early growth response proteins (EGR) and nuclear factors of activated T cells (NFAT) form heterodimers and regulate proinflammatory cytokine gene expression.
Nucleic acids research 2003 Feb 1;31(3):911-21
- Himes SR, Reeves R, Attema J, Nissen M, Li Y, Shannon MF
The role of high-mobility group I(Y) proteins in expression of IL-2 and T cell proliferation.
Journal of immunology (Baltimore, Md. : 1950) 2000 Mar 15;164(6):3157-68
- Tzachanis D, Freeman GJ, Hirano N, van Puijenbroek AA, Delfs MW, Berezovskaya A, Nadler LM, Boussiotis VA
Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells.
Nature immunology 2001 Dec;2(12):1174-82
- Nelson BH, Martyak TP, Thompson LJ, Moon JJ, Wang T
Uncoupling of promitogenic and antiapoptotic functions of IL-2 by Smad-dependent TGF-beta signaling.
Journal of immunology (Baltimore, Md. : 1950) 2003 Jun 1;170(11):5563-70
- McKarns SC, Schwartz RH, Kaminski NE
Smad3 is essential for TGF-beta 1 to suppress IL-2 production and TCR-induced proliferation, but not IL-2-induced proliferation.
Journal of immunology (Baltimore, Md. : 1950) 2004 Apr 1;172(7):4275-84