Immune response - IL-4 signaling pathway

Click on a target from the pathway image to view related information. Zoom     View Legend

photo_map
 


Human PrimePCR Selections
photo_fpc
IL-4 Signaling Pathway H96

Predesigned 96-well panel for use with SYBR® Green

 

List Price:  $394.00

 

Your Price : Log In

photo_fpc
IL-4 Signaling Pathway H384

Predesigned 384-well panel for use with SYBR® Green

 

List Price:  $523.00

 

Your Price : Log In

IL-4 signaling pathway

Interleukin-4 (IL-4) is a T cell derived multifunctional cytokine that plays a critical role in the regulation of immune responses. IL-4 induces Th2 (T helper 2) differentiation, causes macrophage suppression, and stimulates B cell production of Immunoglobulins E, G1 and G4 (IgE, IgG1 and IgG4) [1], [2], [3], [4], [5], [6], [7], [8], [9].

IL-4 can stimulate two receptors, type I and type II. IL-4 receptor type I (IL-4R type I) consists of two subunits, an alpha chain (IL4RA) and a common gamma chain, shared by other cytokines of the IL-2 family [10], [11].

IL-4 binding to IL-4R type I activates several different pathways followed by B cell proliferation, survival of T and B cells, and the production of chemokines important for the recruitment of cells that participate in allergic immune responses [4], [12].

IL-4 engagement of IL-4R type I results in tyrosine phosphorylation of Janus kinases 1 and 3 (JAK1 and JAK3) [13], [14], [15]. JAK1 phosphorylates Signal transducer and activator of transcription 6 (STAT6), which dimerizes and is translocated to the nucleus [9], [16], [17], [18], [19]. In the nucleus, STAT6 promotes transcription of target genes, including Suppressor of cytokine signaling 1 (SOCS1), IL4RA, Chemokine (C-C motif) ligand 11 (Eotaxin), GATA binding protein 3 (GATA-3), Fc fragment of IgE, low affinity II, receptor for (CD23), Immunoglobulin heavy constant epsilon (IGHE), Immunoglobulin heavy constant gamma 1 (IGHG1) and Immunoglobulin heavy constant gamma 4 (IGHG4) [2], [16], [20], [21], [22], [23], [24], [25], [26], [27], [28], [29].

Interaction of SOCS1 with JAK1, and association of Suppressor of cytokine signaling 5 (SOCS5) with IL-4R type I result in the inhibition of IL-4-mediated STAT6 activation [30], [31], [32].

In response to IL-4 signaling, JAK1 phosphorylates Inositol polyphosphate-5-phosphatase 145kDa (SHIP) followed by positive regulation of cell proliferation [30], [33].

JAK1 and JAK3 also phosphorylate two adapter molecules, Insulin receptor substrate 1 and 2 (IRS-1 and IRS-2), leading to the activation of Phosphatidylinositol 3-kinase (PI3K) and Mitogen-activated protein (MAP) pathways [34], [35].

Phosphorylated IRS-1 and IRS-2 bind to and activate the PI3K regulatory subunit (PI3K reg class IA), which stimulates the PI3K catalytic subunit (PI3K cat class IA), generating Phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P3) from Phosphatidylinositol-4,5-bisphosphate (PtdIns (4,5)P2). PtdIns(3,4,5)P3 activates 3-Phosphoinositide dependent protein kinase-1 (PDK (PDPK1)) and v-Akt murine thymoma viral oncogene homolog (AKT(PKB)) [18], [36], [37], [38], [39].

Association of Feline sarcoma oncogene (c-Fes) with IL-4R type I and with PI3K reg class IA upon IL-4 stimulation can also induce PI3K activation [40], [41], [42].

The downstream effectors of PI3K cat class IA/ PDK (PDPK1) and AKT(PKB) signaling, such as Ribosomal protein S6 kinase 70kDa polypeptide 1 (p70S6K), FK506 binding protein 12-rapamycin associated protein 1 (mTOR) and Glycogen synthase kinase 3 beta (GSK3 beta), mediate the effect of PI3K on cell survival by preventing apoptosis and stimulating cell growth and proliferation [39], [43], [44], [45], [46].

AKT also stimulates Nuclear factor-kappa B (NF-kB) activity by upregulating I-kappaB (I-kB) degradation via phosphorylation of I-kappaB kinase alpha (IKK-alpha), a subunit of I-kappaB kinase complex (IKK (cat)), thereby allowing the transcription of NF-kB target genes [47], [48].

IRS-1 and IRS-2 also activate Growth factor receptor-bound protein 2 (GRB2), followed by stimulation of the MAP pathway: GRB2/ Son of sevenless homologs (SOS)/ v-Ha-ras Harvey rat sarcoma viral oncogene homolog (H-Ras)/ v-Raf-1 murine leukemia viral oncogene homolog 1 (c-Raf-1)/ Mitogen-activated protein kinase kinase 1 and 2 (MEK1 and MEK2)/ Extracellular signal-regulated kinase 1 and 2 (ERK1/2). This pathway induces activation of transcription factors, including ELK1 member of ETS oncogene family (Elk-1) [19], [37], [49], [50], [51], [52].

References:

  1. Vercelli D
    One cytokine, two isotypes: a trojan horse, pandora's box, and an evolving paradigm. American journal of respiratory and critical care medicine 2000 Sep;162(3 Pt 2):S86-90
  2. Rao A, Avni O
    Molecular aspects of T-cell differentiation. British medical bulletin 2000;56(4):969-84
  3. Olinescu A
    Aspects of immunity in the treatment of bronchial asthma. Romanian journal of physiology : physiological sciences / [Academia de Stiinte Medicale] 1999 Jul-Dec;36(3-4):195-204
  4. Kelly-Welch AE, Hanson EM, Boothby MR, Keegan AD
    Interleukin-4 and interleukin-13 signaling connections maps. Science (New York, N.Y.) 2003 Jun 6;300(5625):1527-8
  5. Singh RR
    IL-4 and many roads to lupuslike autoimmunity. Clinical immunology (Orlando, Fla.) 2003 Aug;108(2):73-9
  6. Steinke JW
    Anti-interleukin-4 therapy. Immunology and allergy clinics of North America 2004 Nov;24(4):599-614, vi
  7. Jones MG
    Measurement of specific IgG anti-Fel d 1 antibodies. Methods in molecular medicine 2008;138:247-54
  8. Avery DT, Bryant VL, Ma CS, de Waal Malefyt R, Tangye SG
    IL-21-induced isotype switching to IgG and IgA by human naive B cells is differentially regulated by IL-4. Journal of immunology (Baltimore, Md. : 1950) 2008 Aug 1;181(3):1767-79
  9. Kuperman DA, Schleimer RP
    Interleukin-4, interleukin-13, signal transducer and activator of transcription factor 6, and allergic asthma. Current molecular medicine 2008 Aug;8(5):384-92
  10. Hage T, Sebald W, Reinemer P
    Crystal structure of the interleukin-4/receptor alpha chain complex reveals a mosaic binding interface. Cell 1999 Apr 16;97(2):271-81
  11. Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE
    The IL-4 receptor: signaling mechanisms and biologic functions. Annual review of immunology 1999;17:701-38
  12. Benczik M, Gaffen SL
    The interleukin (IL)-2 family cytokines: survival and proliferation signaling pathways in T lymphocytes. Immunological investigations 2004 May;33(2):109-42
  13. Witthuhn BA, Silvennoinen O, Miura O, Lai KS, Cwik C, Liu ET, Ihle JN
    Involvement of the Jak-3 Janus kinase in signalling by interleukins 2 and 4 in lymphoid and myeloid cells. Nature 1994 Jul 14;370(6485):153-7
  14. Mudter J, Neurath MF
    The role of signal transducers and activators of transcription in T inflammatory bowel diseases. Inflammatory bowel diseases 2003 Sep;9(5):332-7
  15. Cetkovic-Cvrlje M, Uckun FM
    Targeting Janus kinase 3 in the treatment of leukemia and inflammatory diseases. Archivum immunologiae et therapiae experimentalis 2004 Mar-Apr;52(2):69-82
  16. Takeda K, Tanaka T, Shi W, Matsumoto M, Minami M, Kashiwamura S, Nakanishi K, Yoshida N, Kishimoto T, Akira S
    Essential role of Stat6 in IL-4 signalling. Nature 1996 Apr 18;380(6575):627-30
  17. Muller-Ladner U, Judex M, Ballhorn W, Kullmann F, Distler O, Schlottmann K, Gay RE, Scholmerich J, Gay S
    Activation of the IL-4 STAT pathway in rheumatoid synovium. Journal of immunology (Baltimore, Md. : 1950) 2000 Apr 1;164(7):3894-901
  18. Acacia de Sa Pinheiro A, Morrot A, Chakravarty S, Overstreet M, Bream JH, Irusta PM, Zavala F
    IL-4 induces a wide-spectrum intracellular signaling cascade in CD8+ T cells. Journal of leukocyte biology 2007 Apr;81(4):1102-10
  19. Ratthe C, Pelletier M, Chiasson S, Girard D
    Molecular mechanisms involved in interleukin-4-induced human neutrophils: expression and regulation of suppressor of cytokine signaling. Journal of leukocyte biology 2007 May;81(5):1287-96
  20. Park HJ, So EY, Lee CE
    Interferon-gamma-induced factor binding to the interleukin-4-responsive element of CD23b promoter in human tonsillar mononuclear cells: role in transient up-regulation of the interleukin-4-induced CD23b mRNA. Molecular immunology 1998 Mar;35(4):239-47
  21. Warren WD, Roberts KL, Linehan LA, Berton MT
    Regulation of the germline immunoglobulin Cgamma1 promoter by CD40 ligand and IL-4: dual role for tandem NF-kappaB binding sites. Molecular immunology 1999 Jan;36(1):31-44
  22. Stutz AM, Woisetschlager M
    Functional synergism of STAT6 with either NF-kappa B or PU.1 to mediate IL-4-induced activation of IgE germline gene transcription. Journal of immunology (Baltimore, Md. : 1950) 1999 Oct 15;163(8):4383-91
  23. Matsukura S, Stellato C, Plitt JR, Bickel C, Miura K, Georas SN, Casolaro V, Schleimer RP
    Activation of eotaxin gene transcription by NF-kappa B and STAT6 in human airway epithelial cells. Journal of immunology (Baltimore, Md. : 1950) 1999 Dec 15;163(12):6876-83
  24. So EY, Park HH, Lee CE
    IFN-gamma and IFN-alpha posttranscriptionally down-regulate the IL-4-induced IL-4 receptor gene expression. Journal of immunology (Baltimore, Md. : 1950) 2000 Nov 15;165(10):5472-9
  25. Lee CE, Park HJ
    Interleukin-4 induces two distinct GAS-binding complexes containing STAT6: evidence for DNA binding of STAT6 monomer. Molecules and cells 2001 Feb 28;11(1):28-34
  26. Eriksen KW, Sommer VH, Woetmann A, Rasmussen AB, Brender C, Svejgaard A, Skov S, Geisler C, ?dum N
    Bi-phasic effect of interferon (IFN)-alpha: IFN-alpha up- and down-regulates interleukin-4 signaling in human T cells. The Journal of biological chemistry 2004 Jan 2;279(1):169-76
  27. Hebenstreit D, Luft P, Schmiedlechner A, Regl G, Frischauf AM, Aberger F, Duschl A, Horejs-Hoeck J
    IL-4 and IL-13 induce SOCS-1 gene expression in A549 cells by three functional STAT6-binding motifs located upstream of the transcription initiation site. Journal of immunology (Baltimore, Md. : 1950) 2003 Dec 1;171(11):5901-7
  28. Pfitzner E, Kliem S, Baus D, Litterst CM
    The role of STATs in inflammation and inflammatory diseases. Current pharmaceutical design 2004;10(23):2839-50
  29. Hebenstreit D, Wirnsberger G, Horejs-Hoeck J, Duschl A
    Signaling mechanisms, interaction partners, and target genes of STAT6. Cytokine & growth factor reviews 2006 Jun;17(3):173-88
  30. Jiang H, Harris MB, Rothman P
    IL-4/IL-13 signaling beyond JAK/STAT. The Journal of allergy and clinical immunology 2000 Jun;105(6 Pt 1):1063-70
  31. Seki Y, Hayashi K, Matsumoto A, Seki N, Tsukada J, Ransom J, Naka T, Kishimoto T, Yoshimura A, Kubo M
    Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proceedings of the National Academy of Sciences of the United States of America 2002 Oct 1;99(20):13003-8
  32. Davey GM, Heath WR, Starr R
    SOCS1: a potent and multifaceted regulator of cytokines and cell-mediated inflammation. Tissue antigens 2006 Jan;67(1):1-9
  33. Giallourakis C, Kashiwada M, Pan PY, Danial N, Jiang H, Cambier J, Coggeshall KM, Rothman P
    Positive regulation of interleukin-4-mediated proliferation by the SH2-containing inositol-5'-phosphatase. The Journal of biological chemistry 2000 Sep 22;275(38):29275-82
  34. Gingras S, Cote S, Simard J
    Multiple signal transduction pathways mediate interleukin-4-induced 3beta-hydroxysteroid dehydrogenase/Delta5-Delta4 isomerase in normal and tumoral target tissues. The Journal of steroid biochemistry and molecular biology 2001 Jan-Mar;76(1-5):213-25
  35. Wurster AL, Withers DJ, Uchida T, White MF, Grusby MJ
    Stat6 and IRS-2 cooperate in interleukin 4 (IL-4)-induced proliferation and differentiation but are dispensable for IL-4-dependent rescue from apoptosis. Molecular and cellular biology 2002 Jan;22(1):117-26
  36. Franke TF, Kaplan DR, Cantley LC
    PI3K: downstream AKTion blocks apoptosis. Cell 1997 Feb 21;88(4):435-7
  37. Xiao H, Yin T, Wang XY, Uchida T, Chung J, White MF, Yang YC
    Specificity of interleukin-2 receptor gamma chain superfamily cytokines is mediated by insulin receptor substrate-dependent pathway. The Journal of biological chemistry 2002 Mar 8;277(10):8091-8
  38. O'Connor JC, Sherry CL, Guest CB, Freund GG
    Type 2 diabetes impairs insulin receptor substrate-2-mediated phosphatidylinositol 3-kinase activity in primary macrophages to induce a state of cytokine resistance to IL-4 in association with overexpression of suppressor of cytokine signaling-3. Journal of immunology (Baltimore, Md. : 1950) 2007 Jun 1;178(11):6886-93
  39. Lin SJ, Chang C, Ng AK, Wang SH, Li JJ, Hu CP
    Prevention of TGF-beta-induced apoptosis by interlukin-4 through Akt activation and p70S6K survival signaling pathways. Apoptosis : an international journal on programmed cell death 2007 Sep;12(9):1659-70
  40. Izuhara K, Feldman RA, Greer P, Harada N
    Interaction of the c-fes proto-oncogene product with the interleukin-4 receptor. The Journal of biological chemistry 1994 Jul 15;269(28):18623-9
  41. Izuhara K, Feldman RA, Greer P, Harada N
    Interleukin-4 induces association of the c-fes proto-oncogene product with phosphatidylinositol-3 kinase. Blood 1996 Nov 15;88(10):3910-8
  42. Izuhara K, Harada N
    Interleukin-4 activates two distinct pathways of phosphatidylinositol-3 kinase in the same cells. Biochemical and biophysical research communications 1996 Dec 13;229(2):624-9
  43. Hartman ME, O'Connor JC, Godbout JP, Minor KD, Mazzocco VR, Freund GG
    Insulin receptor substrate-2-dependent interleukin-4 signaling in macrophages is impaired in two models of type 2 diabetes mellitus. The Journal of biological chemistry 2004 Jul 2;279(27):28045-50
  44. Bilancio A, Okkenhaug K, Camps M, Emery JL, Ruckle T, Rommel C, Vanhaesebroeck B
    Key role of the p110delta isoform of PI3K in B-cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110delta function in B cells. Blood 2006 Jan 15;107(2):642-50
  45. Dal Col J, Zancai P, Terrin L, Guidoboni M, Ponzoni M, Pavan A, Spina M, Bergamin S, Rizzo S, Tirelli U, De Rossi A, Doglioni C, Dolcetti R
    Distinct functional significance of Akt and mTOR constitutive activation in mantle cell lymphoma. Blood 2008 May 15;111(10):5142-51
  46. Cardoso BA, Martins LR, Santos CI, Nadler LM, Boussiotis VA, Cardoso AA, Barata JT
    Interleukin-4 stimulates proliferation and growth of T-cell acute lymphoblastic leukemia cells by activating mTOR signaling. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 2009 Jan;23(1):206-8
  47. Boothby M, Mora AL, Aronica MA, Youn J, Sheller JR, Goenka S, Stephenson L
    IL-4 signaling, gene transcription regulation, and the control of effector T cells. Immunologic research 2001;23(2-3):179-91
  48. Lee SO, Lou W, Nadiminty N, Lin X, Gao AC
    Requirement for NF-(kappa)B in interleukin-4-induced androgen receptor activation in prostate cancer cells. The Prostate 2005 Jul 1;64(2):160-7
  49. Robinson MJ, Cobb MH
    Mitogen-activated protein kinase pathways. Current opinion in cell biology 1997 Apr;9(2):180-6
  50. Coffer PJ, Schweizer RC, Dubois GR, Maikoe T, Lammers JW, Koenderman L
    Analysis of signal transduction pathways in human eosinophils activated by chemoattractants and the T-helper 2-derived cytokines interleukin-4 and interleukin-5. Blood 1998 Apr 1;91(7):2547-57
  51. Hirst SJ, Hallsworth MP, Peng Q, Lee TH
    Selective induction of eotaxin release by interleukin-13 or interleukin-4 in human airway smooth muscle cells is synergistic with interleukin-1beta and is mediated by the interleukin-4 receptor alpha-chain. American journal of respiratory and critical care medicine 2002 Apr 15;165(8):1161-71
  52. Jang JY, Lee CE
    IL-4-induced upregulation of adenine nucleotide translocase 3 and its role in Th cell survival from apoptosis. Cellular immunology 2006 May;241(1):14-25

Target Details

Click on a target from the pathway image to view related information.

[ Close ]
Click here to print
[ Close ]
Click here to print
 

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined