Development - Angiotensin signaling via PYK2

Click on a target from the pathway image to view related information. Zoom     View Legend

photo_map
 


Human PrimePCR Selections
photo_fpc
Angiotensin Signaling via PYK2 H96

Predesigned 96-well panel for use with SYBR® Green

 

List Price:  $394.00

 

Your Price : Log In

photo_fpc
Angiotensin Signaling via PYK2 H384

Predesigned 384-well panel for use with SYBR® Green

 

List Price:  $523.00

 

Your Price : Log In

Angiotensin activation of MAPKs via Pyk2

Angiotensin II, a major effector peptide of the renin-angiotensin system, is believed to play a critical role in the pathogenesis of cardiovascular remodeling associated with hypertension, heart failure, and atherosclerosis. [1]

Angiotensin II receptor, type-1 mediates major cardiovascular effects of Angiotensin II. It belongs to the guanine nucleotide-binding regulatory protein (G protein)-coupled receptor (GPCR) superfamily. [2] Human Angiotensin II receptor, type-1 is found in liver, lung, adrenal, and adrenocortical adenomas [3].

In general terms, the mechanisms used by GPCRs to stimulate mitogen-activated protein kinases (MAPKs) fall into one of several broad categories. One of the important mechanisms involves the cross-talk between GPCRs and classical receptor tyrosine kinase, e.g., Epidermal growth factor receptor (EGFR). This process is called transactivation.

Upon binding with Angiotensin II the Angiotensin II receptor, type-1 is stabilized in its active conformation and stimulates heterotrimeric G proteins (most notably G q/11). These G-proteins dissociate into alpha (G-protein alpha-q/11) and beta/gamma (G-protein beta/gamma) subunits [4]. Both subunits take part in the activation of mitogen-activated protein kinase cascade.

G-protein alpha-q/11 and G-protein beta/gamma act as signal transducers for activation of the Phospholipase C beta (PLC-beta) [5]. PLC-beta activation leads to hydrolysis of Phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and formation of Diacylglycerol (DAG) and Inositol trisphosphate (IP3). DAG and IP3 stimulate the Protein kinase C (e.g., PKC-delta and PKC-epsilon) and mobilize intracellular Ca2+, respectively. These effectors are believed to mediate most of the well established acute responses to Angiotensin II, including vasoconstriction, aldosterone biosynthesis and thirst/salt appetite [6].

Angiotensin II receptor, type-1 induces activation of Ca2+/Calmodulin-dependent protein kinase II (CaMK II), PKC-delta and PKC-epsilon. These kinases phosphorylate PTK2B protein tyrosine kinase 2 beta (Pyk2(FAK2)) and activate it [7], [8].

Pyk2(FAK2) is a key tyrosine kinase in the early events of the Angiotensin II signaling. It is a point of split of the Angiotensin II signaling.

Pyk2(FAK2)-dependent phosphorylation and interaction with the adapter molecule protein Crk-associated substrate (p130CAS) lead to their association with the p85 regulatory subunit of Phosphatidylinositol 3-kinase (PI3K reg class 1A (p85)) [9], [10].

This complex formation leads to the activation of PI3K and to regulation of important cell processes, e.g., protein synthesis via regulation of the Eukaryotic initiation factor 4E (eIF4E)/eIF4E-bindind protein (4E-BP) complex [11].

Pyk2(FAK2) is the main mediator responsible for the transmission of Angiotensin II signals to Ras-related C3 botulinum toxin substrate 1 (Rac1) via, e.g, Guanine nucleotide exchange factor VAV-1 [12], [13]). Activated Rac1 stimulates the cascade that involves p21-Activated kinase 1 (PAK1)/ Mitogen-activated protein kinase kinase kinase 1 (MEKK1)/ Dual specificity mitogen-activated protein kinase kinase 4 (MEK4)/c-Jun N-terminal kinase (JNK(MAPK8-10)). Tyrosine-protein kinase v-Src sarcoma viral oncogene homolog (c-Src) is also partially involved in Rac1 activation [14].

c-Src in turn may activates Phospholipase C gamma 1 (PLC-gamma 1) that plays the same role as PLC-beta [15].

In additional, Pyk2(FAK2) acts as an upstream regulator of two parallel signaling pathways, ERK and PI3K pathways. The formation of the complex between Src homology 2 domain containing transforming protein (Shc) and Growth factor receptor bound 2 (GRB2) leads to activation of the Son of sevenless proteins (SOS)/ v-Ha-ras Harvey rat sarcoma viral oncogene homolog (H-Ras)/ v-Raf-1 murine leukemia viral oncogene homolog 1 (c-Raf-1)/ Mitogen-activated protein kinase kinase 1 and 2 (MEK1 and MEK2)/ Mitogen-activated protein kinases 1 and 3 (ERK2 and ERK1) cascade [9], [16].

Activation by Angiotensin II leads to nuclear translocation of the ERK1, ERK2 and JNK(MAPK8-10) kinases, as well as to activation of transcription factors, e.g. c-Fos, c-Jun, ATF-2, and Elk-1. Many of these factors can form different AP-1 complexes, e.g. ATF-2/c-Jun [14] or c-Jun/c-Fos [17]. Thus, ERK and JNK signaling cascades participate via activation of AP-1 in diverse of cellular functions [18].

References:

  1. Goodfriend TL, Elliott ME, Catt KJ
    Angiotensin receptors and their antagonists. The New England journal of medicine 1996 Jun 20;334(25):1649-54
  2. Murphy TJ, Alexander RW, Griendling KK, Runge MS, Bernstein KE
    Isolation of a cDNA encoding the vascular type-1 angiotensin II receptor. Nature 1991 May 16;351(6323):233-6
  3. Takayanagi R, Ohnaka K, Sakai Y, Nakao R, Yanase T, Haji M, Inagami T, Furuta H, Gou DF, Nakamuta M
    Molecular cloning, sequence analysis and expression of a cDNA encoding human type-1 angiotensin II receptor. Biochemical and biophysical research communications 1992 Mar 16;183(2):910-6
  4. Luttrell LM, Daaka Y, Lefkowitz RJ
    Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Current opinion in cell biology 1999 Apr;11(2):177-83
  5. Ushio-Fukai M, Griendling KK, Akers M, Lyons PR, Alexander RW
    Temporal dispersion of activation of phospholipase C-beta1 and -gamma isoforms by angiotensin II in vascular smooth muscle cells. Role of alphaq/11, alpha12, and beta gamma G protein subunits. The Journal of biological chemistry 1998 Jul 31;273(31):19772-7
  6. Thomas WG, Qian H, Smith NJ
    When 6 is 9: 'uncoupled' AT1 receptors turn signalling on its head. Cellular and molecular life sciences : CMLS 2004 Nov;61(21):2687-94
  7. Ginnan R, Singer HA
    CaM kinase II-dependent activation of tyrosine kinases and ERK1/2 in vascular smooth muscle. American journal of physiology. Cell physiology 2002 Apr;282(4):C754-61
  8. Du JQ, Sun CW, Tang JS
    Effect of angiotensin II type 1 receptor on delayed rectifier potassium current in catecholaminergic CATH.a cells. Acta pharmacologica Sinica 2004 Sep;25(9):1145-50
  9. Rocic P, Govindarajan G, Sabri A, Lucchesi PA
    A role for PYK2 in regulation of ERK1/2 MAP kinases and PI 3-kinase by ANG II in vascular smooth muscle. American journal of physiology. Cell physiology 2001 Jan;280(1):C90-9
  10. Riggins RB, DeBerry RM, Toosarvandani MD, Bouton AH
    Src-dependent association of Cas and p85 phosphatidylinositol 3'-kinase in v-crk-transformed cells. Molecular cancer research : MCR 2003 Apr;1(6):428-37
  11. Rocic P, Jo H, Lucchesi PA
    A role for PYK2 in ANG II-dependent regulation of the PHAS-1-eIF4E complex by multiple signaling cascades in vascular smooth muscle. American journal of physiology. Cell physiology 2003 Dec;285(6):C1437-44
  12. Okabe S, Fukuda S, Kim YJ, Niki M, Pelus LM, Ohyashiki K, Pandolfi PP, Broxmeyer HE
    Stromal cell-derived factor-1alpha/CXCL12-induced chemotaxis of T cells involves activation of the RasGAP-associated docking protein p62Dok-1. Blood 2005 Jan 15;105(2):474-80
  13. Bubeck Wardenburg J, Pappu R, Bu JY, Mayer B, Chernoff J, Straus D, Chan AC
    Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity 1998 Nov;9(5):607-16
  14. Murasawa S, Matsubara H, Mori Y, Masaki H, Tsutsumi Y, Shibasaki Y, Kitabayashi I, Tanaka Y, Fujiyama S, Koyama Y, Fujiyama A, Iba S, Iwasaka T
    Angiotensin II initiates tyrosine kinase Pyk2-dependent signalings leading to activation of Rac1-mediated c-Jun NH2-terminal kinase. The Journal of biological chemistry 2000 Sep 1;275(35):26856-63
  15. Touyz RM, Berry C
    Recent advances in angiotensin II signaling. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica ... [et al.] 2002 Sep;35(9):1001-15
  16. Shah BH, Catt KJ
    Calcium-independent activation of extracellularly regulated kinases 1 and 2 by angiotensin II in hepatic C9 cells: roles of protein kinase Cdelta, Src/proline-rich tyrosine kinase 2, and epidermal growth receptor trans-activation. Molecular pharmacology 2002 Feb;61(2):343-51
  17. Hamaguchi A, Kim S, Yano M, Yamanaka S, Iwao H
    Activation of glomerular mitogen-activated protein kinases in angiotensin II-mediated hypertension. Journal of the American Society of Nephrology : JASN 1998 Mar;9(3):372-80
  18. Berk BC, Corson MA
    Angiotensin II signal transduction in vascular smooth muscle: role of tyrosine kinases. Circulation research 1997 May;80(5):607-16

Target Details

Click on a target from the pathway image to view related information.

[ Close ]
Click here to print
[ Close ]
Click here to print
 

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined

undefined

undefined

My PrimePCR Hot List stores your saved PrimePCR products and configurations

undefined