Naphthylamine and 2-Nitronaphtalene metabolism
Metabolism and binding studies with 2-Naphthylamine and
many other arylamines have shown cytochrome P-450 catalysed N-hydroxylation to be a
critical step in the activation of these compounds. Followed by glucuronidation and
excretion of the glucuronides via the kidney, this reaction can account for the ability
of 2-Naphthylamine to initiate tumours of the bladder [1].
2-Hydroxyamino-naphthalene is formed in the reaction of
N-oxidation catalyzed by unspecific monooxygenase [2]. This compound, can
spontaneous bind to DNA to form mutagenic DNA adducts. 2-Naphthylamine
and 2-Hydroxyamino-naphthalene conjugate with
UDP-D-glucuronic acid and form respectively
2-Naphthylamine-N-beta-D-glucuronoside and
2-Hydroxyamino-naphthalene-N-beta-D-glucuronoside. Both
reactions are catalyzed by the family of glucuronosyltransferase enzymes that includes:
UDP Glucuronosyltransferase 1 family, polypeptide A4
(UGT1A4), UDP
Glucuronosyltransferase 1 family, polypeptide A1
(UGT1A1), UDP Glucuronosyltransferase 1
family, polypeptide A3 (UGT1A3); UDP Glucuronosyltransferase
1 family, polypeptide A9 (UGT1A9); (UDP
Glucuronosyltransferase 1 family, polypeptide A8
(UGT1A8), and UDP Glucuronosyltransferase 1
family, polypeptide A6 (UGT1A6) [2], [3], [4], [5]. 2-Hydroxyamino-naphthalene
can spontaneously isomerize further into the
2-Amino-1-naphthol. The latter conjugates with
UDP-D-glucuronic acid in the reaction catalyzed by the same
glucuronosyltransferase enzymes.
In addition, both 2-Hydroxyamino-naphthalene and
2-Amino-1-Naphthol form sulphate conjugates
N-Hydroxy-2-naphthyl-sulfamic acid and
2-Amino-1-naphthylsulfate, respectively. Both reactions are
catalyzed by the family of sulfotransferase enzymes: Sulfotransferase family, cytosolic,
1A, phenol-preferring, members 1, 2, 3 and 4 (SULT1A1,
SULT1A2, SULT1A3 and
SULT1A4) correspondingly [2], [6], [7], [8]. Further N-Hydroxy-2-naphthyl-sulfamic
acid isomerizes into
2-Amino-1-naphthylsulfate.
2-Hydroxyamino-naphthalene is formed by reduction of
2-Nitrosonaphthalene in the reaction of catalyzed by unknown
oxidoreductase [9]. 2-Nitrosonaphthalene is
formed by reduction of 2-Nitronaphthalene also catalyzed by
unknown oxidoreductase [9].
2-Nitronaphthalene is oxidized to
2-Nitronaphthalene-5,6-oxide and
2-Nitronaphthalene-7,8-oxide by following enzymes:
Cytochrome P450, family 3, subfamily A, polypeptide 4
(CYP3A4), Cytochrome P450, family 1,
subfamily A, polypeptide 1 (CYP1A1), Cytochrome P450, family
2, subfamily E, polypeptide 1 (CYP2E1), Cytochrome P450,
family 1, subfamily A, polypeptide 2 (CYP1A2), Cytochrome
P450, family 2, subfamily F, polypeptide 1 (CYP2F1) and
Cytochrome P450, family 2, subfamily B (CYP2B1) [10], [11], [12], [13], [14].
Epoxide hydrolase 1, microsomal (xenobiotic) (HYEP)
hydrolyzes both 2-Nitronaphthalene-5,6-oxide and
2-Nitronaphthalene-7,8-oxide to
2-Nitro-5,6-dihydroxy-dihydronaphthalene and
2-Nitro-7,8-dihydroxy-dihydronaphthalene, respectively
[13], [15], [16], [17].
Glutathione S-transferases can transfer glutathione to two positions on
2-Nitronaphthalene-5,6-oxide and
2-Nitronaphthalene-7,8-oxide molecules to form
2-Nitro-5-glutathionyl-6-hydroxy-5,6-dihydronaphthalene,
2-Nitro-5-hydroxy-6-glutathionyl-5,6-dihydronaphthalene and
2-Nitro-7-glutathionyl-8-hydroxy-7,8-dihydronaphthalene,
2-Nitro-7-hydroxy-8-glutathionyl-7,8-dihydronaphthalene,
respectively. The enzymes capable of catalyzing these reactions include: glutathione
S-transferase A1, A2, A3, A4, A5 (GSTA1,
GSTA2, GSTA3,
GSTA4 and GSTA5) accordingly
[18], [19], [20], [21], [22].
References:
- Moore BP, Potter PM, Hicks RM
Metabolism of 2-naphthylamine and benzidine by rat and human bladder organ cultures.
Carcinogenesis 1984 Jul;5(7):949-54
- Kadlubar FF, Unruh LE, Flammang TJ, Sparks D, Mitchum RK, Mulder GJ
Alteration of urinary levels of the carcinogen, N-hydroxy-2-naphthylamine, and its N-glucuronide in the rat by control of urinary pH, inhibition of metabolic sulfation, and changes in biliary excretion.
Chemico-biological interactions 1981 Jan;33(2-3):129-47
- Kadlubar FF, Miller JA, Miller EC
Hepatic microsomal N-glucuronidation and nucleic acid binding of N-hydroxy arylamines in relation to urinary bladder carcinogenesis.
Cancer research 1977 Mar;37(3):805-14
- Pacifici GM, Giuliani L, Calcaprina R
Glucuronidation of 1-naphthol in nuclear and microsomal fractions of the human intestine.
Pharmacology 1986;33(2):103-9
- Tukey RH, Strassburg CP
Human UDP-glucuronosyltransferases: metabolism, expression, and disease.
Annual review of pharmacology and toxicology 2000;40:581-616
- Rossi AM, Maggini V, Fredianelli E, Di Bello D, Pietrabissa A, Mosca F, Barale R, Pacifici GM
Phenotype-genotype relationships of SULT1A1 in human liver and variations in the IC50 of the SULT1A1 inhibitor quercetin.
International journal of clinical pharmacology and therapeutics 2004 Oct;42(10):561-7
- Hempel N, Wang H, LeCluyse EL, McManus ME, Negishi M
The human sulfotransferase SULT1A1 gene is regulated in a synergistic manner by Sp1 and GA binding protein.
Molecular pharmacology 2004 Dec;66(6):1690-701
- Bradley ME, Benner SA
Phylogenomic approaches to common problems encountered in the analysis of low copy repeats: the sulfotransferase 1A gene family example.
BMC evolutionary biology 2005 Mar 7;5(1):22
- Poirier LA, Weisburger JH
Enzymic reduction of carcinogenic aromatic nitro compounds by rat and mouse liver fractions.
Biochemical pharmacology 1974 Feb 1;23(3):661-9
- Verschoyle RD, Carthew P, Wolf CR, Dinsdale D
1-Nitronaphthalene toxicity in rat lung and liver: effects of inhibiting and inducing cytochrome P450 activity.
Toxicology and applied pharmacology 1993 Oct;122(2):208-13
- Wilson AS, Davis CD, Williams DP, Buckpitt AR, Pirmohamed M, Park BK
Characterisation of the toxic metabolite(s) of naphthalene.
Toxicology 1996 Dec 18;114(3):233-42
- Takemoto K, Yamazaki H, Tanaka Y, Nakajima M, Yokoi T
Catalytic activities of cytochrome P450 enzymes and UDP-glucuronosyltransferases involved in drug metabolism in rat everted sacs and intestinal microsomes.
Xenobiotica; the fate of foreign compounds in biological systems 2003 Jan;33(1):43-55
- Cho TM, Rose RL, Hodgson E
In vitro metabolism of naphthalene by human liver microsomal cytochrome P450 enzymes.
Drug metabolism and disposition: the biological fate of chemicals 2006 Jan;34(1):176-83
- Genter MB, Marlowe J, Kevin Kerzee J, Dragin N, Puga A, Dalton TP, Nebert DW
Naphthalene toxicity in mice and aryl hydrocarbon receptor-mediated CYPs.
Biochemical and biophysical research communications 2006 Sep 15;348(1):120-3
- Wang P, Meijer J, Guengerich FP
Purification of human liver cytosolic epoxide hydrolase and comparison to the microsomal enzyme.
Biochemistry 1982 Nov 9;21(23):5769-76
- Kitteringham NR, Davis C, Howard N, Pirmohamed M, Park BK
Interindividual and interspecies variation in hepatic microsomal epoxide hydrolase activity: studies with cis-stilbene oxide, carbamazepine 10, 11-epoxide and naphthalene.
The Journal of pharmacology and experimental therapeutics 1996 Sep;278(3):1018-27
- Morisseau C, Hammock BD
Epoxide hydrolases: mechanisms, inhibitor designs, and biological roles.
Annual review of pharmacology and toxicology 2005;45:311-33
- Prabhu KS, Reddy PV, Gumpricht E, Hildenbrandt GR, Scholz RW, Sordillo LM, Reddy CC
Microsomal glutathione S-transferase A1-1 with glutathione peroxidase activity from sheep liver: molecular cloning, expression and characterization.
The Biochemical journal 2001 Dec 1;360(Pt 2):345-54
- Raza H, Robin MA, Fang JK, Avadhani NG
Multiple isoforms of mitochondrial glutathione S-transferases and their differential induction under oxidative stress.
The Biochemical journal 2002 Aug 15;366(Pt 1):45-55
- Hayeshi R, Mukanganyama S, Hazra B, Abegaz B, Hasler J
The interaction of selected natural products with human recombinant glutathione transferases.
Phytotherapy research : PTR 2004 Nov;18(11):877-83
- Urbanek H, Majorowicz H, Zalewski M, Saniewski M
Induction of glutathione S-transferase and glutathione by toxic compounds and elicitors in reed canary grass.
Biotechnology letters 2005 Jul;27(13):911-4
- Lin CY, Boland BC, Lee YJ, Salemi MR, Morin D, Miller LA, Plopper CG, Buckpitt AR
Identification of proteins adducted by reactive metabolites of naphthalene and 1-nitronaphthalene in dissected airways of rhesus macaques.
Proteomics 2006 Feb;6(3):972-82